Spontaneous Causal Learning While Controlling A Dynamic System
نویسندگان
چکیده
When dealing with a dynamic causal system people may employ a variety of different strategies. One of these strategies is causal learning, that is, learning about the causal structure and parameters of the system acted upon. In two experiments we examined whether people spontaneously induce a causal model when learning to control the state of an outcome value in a dynamic causal system. After the control task, we modified the causal structure of the environment and assessed decision makers’ sensitivity to this manipulation. While purely instrumental knowledge does not support inferences given the new modified structure, causal knowledge does. The results showed that most participants learned the structure of the underlying causal system. However, participants acquired surprisingly little knowledge of the system’s parameters when the causal processes that governed the system were not perceptually separated (Experiment 1). Knowledge improved considerably once processes were separated and feedback was made more transparent (Experiment 2). These findings indicate that even without instruction, causal learning is a favored strategy for interacting with and controlling a dynamic causal system.
منابع مشابه
Mini/Micro-Grid Adaptive Voltage and Frequency Stability Enhancement Using Q-learning Mechanism
This paper develops an adaptive control method for controlling frequency and voltage of an islanded mini/micro grid (M/µG) using reinforcement learning method. Reinforcement learning (RL) is one of the branches of the machine learning, which is the main solution method of Markov decision process (MDPs). Among the several solution methods of RL, the Q-learning method is used for solving RL in th...
متن کاملProposing a Human Resource Balanced Scorecard based on Dynamic Systems Simulation s-based
Objective: The purpose of this study is to provide a dynamic system model for modeling the growth and learning perspective of a manufacturing company. The main focus of the model is on the company's human resources management process. Methods: In this study, an approach based on dynamic simulation has been proposed to evaluate the human resource condition. In order to do that, the researchers...
متن کاملExploiting Causal Domain Knowledge for Learning to Control Dynamic Systems
This paper introduces a simple yet eeective method for using causal domain knowledge for learning to control dynamic systems. Elementary qualitative causal dependencies of the domain are exploited in order to dramatically speed up the learning of reliable control strategies from a simulation model of the system. The reliability of the obtained control strategies is strengthened as well. The eee...
متن کاملLearning Causal Models That Make Correct Manipulation Predictions
One of the fundamental purposes of causal models is using them to predict the effects of manipulating various components of a system. It has been argued by Dash (2005, 2003) that the Do operator will fail when applied to an equilibrium model, unless the underlying dynamic system obeys what he calls Equilibration-Manipulation Commutability. Unfortunately, this fact renders most existing causal d...
متن کاملA Controller Design with ANFIS Architecture Attendant Learning Ability for SSSC-Based Damping Controller Applied in Single Machine Infinite Bus System
Static Synchronous Series Compensator (SSSC) is a series compensating Flexible AC Transmission System (FACTS) controller for maintaining to the power flow control on a transmission line by injecting a voltage in quadrature with the line current and in series mode with the line. In this work, an Adaptive Network-based Fuzzy Inference System controller (ANFISC) has been proposed for controlling o...
متن کامل